CHEMISTRY ENTRANCE TEST SAMPLE PAPER

sample paper only provides 10 MCQ and 2 SAQ

Actual Paper Total 30 MCQ + 4 SAQ

Each MCQ is 2 marks Each SAQ is 10 marks

Instructions

- 1. This is a **closed-book** test.
- 2. It has a time limit of **90 minutes** and allows for only **ONE attempt (submission)**.
- 3. Alert the invigilator if you are facing technical difficulties.
- 4. You are to **ensure** that:
 - your laptops, computers and any other devices used for this test is in good functioning order and have uninterrupted power supply and internet connection throughout the duration of the test.
 - you are in a conducive environment throughout the duration of the test.
 - your answers are correctly saved by the end of the test.
- 5. You are **allowed** to use:
 - a scientific calculator.
 - A blank piece of paper (no larger than A4 size) for rough work. The paper will not be accepted for submission at the end of the test.
- 6. You are **not allowed** to:
 - leave the test or leave your devices throughout the duration of the test.
 - use the washroom throughout the duration of the test.
 - communicate with any person, either face-to-face or through any communication device, other than the invigilator.
 - refer to any references, e.g. textbooks, resources from a laptop or smart devices etc.
 - share materials (e.g. electronic calculator) during the test.
 - use any communication devices such as mobile phones, tablets, smart watches, headsets during the test.
- 7. Enter the password provided by the invigilator to start Test paper.

SECTION A (20 MARKS)

Answer ALL questions in this section in the spaces provided.

- A1. Methanol boils at 65°C and water boils at 100°C. Given that methanol and water are completely miscible with each other, which is the **MOST SUITABLE** method to separate a mixture of these two liquids?
 - a. Evaporation
 - b. Crystallisation
 - c. Fractional distillation
 - d. Paper chromatography

)

(

- A2. A stopper was removed from a bottle containing perfume A and the time taken for the scent to reach the opposite side of the room was noted. The experiment was repeated using perfume B, which had a LOWER molecular mass than perfume A. Based on the information provided, predict the time taken for perfume B to reach the opposite side of the room compared to perfume A.
 - a. Same as perfume **A**.
 - b. Shorter than perfume **A**.
 - c. Longer than perfume **A**.
 - d. Insufficient data to compare the time taken by perfume **A** and **B**. ()

A3. Two isotopes of carbon are ${}^{12}C_{6}$ and ${}^{13}C_{6}$. Which statement about the isotopes is **TRUE**?

- a. They have the same number of electrons and neutrons.
- b. They have the same number of electrons and protons.
- c. They have the same number of neutrons and protons.
- d. They have the same number of neucleons and electrons. ()
- A4. A label is missing from a bottle of green solution **C**. In order to identify the solution, two chemical tests are carried out.
 - Test 1: A few drops of aqueous sodium hydroxide are added to a sample of solution **C**. A green precipitate is formed.
 - Test 2: Excess aqueous sodium hydroxide and aluminium are added to another sample of solution C and heated. A pungent gas, which turns damp red litmus paper blue, is produced.

What is C?

- a. Iron(II) nitrate
- b. Iron(III) nitrate
- c. Iron(II) sulfate
- d. Iron(III) sulfate

)

(

(

- A5. Which statement describes the formation of a covalent bond?
 - a. Electrons are shared between metallic atoms.
 - b. Electrons are shared between non-metallic atoms.
 - c. Electrons are transferred from a metallic atom to a non-metallic atom.
 - d. Electrons are transferred from a non-metallic atom to a metallic atom.

)

A6. The electronic configuration of atom **D** is 2, 7. The electronic configuration of atom **E** is 2, 6. What is the formula of the compound formed between atoms **D** and **E**?

a.	D_2E			
b.	DE_2			
C.	D_6E			
d.	DE ₇		()

- A7. Manganese(III) sulfate has the formula, $Mn_2(SO_4)_3$. What is the charge on the manganese ion?
 - a. 2+b. 3+c. 2d. 3- ()
- A8. Dissolving sodium carbonate in water is an exothermic process. Which row shows the change in temperature of solution and the direction of heat flow when sodium carbonate is dissolved in a beaker of water?

	Temperature of solution	Direction of heat flow
a.	Increase	To surrounding
b.	Decrease	To surrounding
c.	Increase	From surrounding
d.	Decrease	From surrounding

()

A9. In which equation is copper reduced?

I:	$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$
II:	$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$
III:	$CuSO_4(aq) + 2NH_4OH(aq) \rightarrow Cu(OH)_2(s) + (NH_4)_2SO_4(aq)$

- a. **I & II**
- b. **I** & **III**
- c. II & III
- d. I, II & III

()

A10. The following reactions are carried out.

Reaction	Result
Ammonium chloride is added to	Gas F is given off.
barium hydroxide.	
Sulfuric acid is added to ammonium	Gas G is given off.
carbonate.	
Hydrochloric acid is added to an	Compound H is formed
aqueous solution of ammonia.	

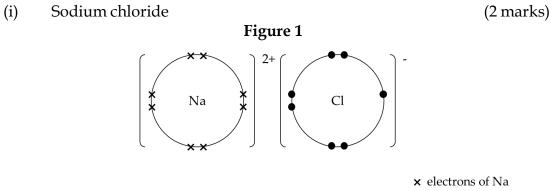
What are **F**, **G** and **H**?

	Gas F	Gas G	Compound H
a.	Chlorine	Ammonia	Ammonium sulfate
b.	Ammonia	Carbon dioxide	Ammonium sulfate
с.	Carbon dioxide	Ammonia	Ammonium chloride
d.	Ammonia	Carbon dioxide	Ammonium chloride

()

----- End of Section A -----

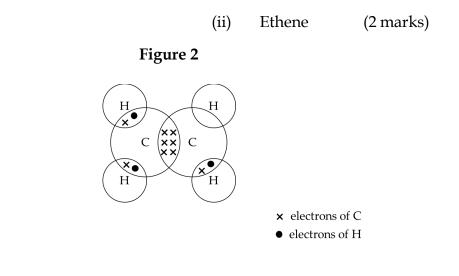
SECTION B (20 MARKS)


Answer **ALL** questions in this section in the spaces provided.

B1. (a) Table 1 describes the properties of compounds. Complete Table 1 by writing True **OR** False in the spaces provided. (2 marks)

Properties of compounds	True / False
A compound has a fixed composition.	True
A compound has a fixed melting/boiling point.	
A compound can only be decomposed by a chemical reaction.	

Table 1


(b) Sodium chloride and ethene are compounds with different physical and chemical properties. Figures 1 and 2 show the 'dot and cross' diagrams of the outer shell electrons in sodium chloride and ethene. Identify the **TWO** errors in **EACH** figure.

• electrons of Cl

Error 1:

Error 2:

Error 2:

(c) Explain, in terms of structure and bonding, why:

(i) both solid sodium chloride and gaseous ethene do **NOT** conduct electricity. (3 marks)

(ii) molten sodium chloride will conduct electricity. (1 mark)

B2. In thermite welding, iron(III) oxide reacts with aluminium according to the following reaction.

 $Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(l) + Al_2O_3(s)$

- (a) Fine powders of both iron(III) oxide and aluminium are used in this reaction. State the advantage of using reactants in powder form. (1 mark)
- (b) If 9.00 g of iron(III) oxide is reacted with 2.80 g of aluminium, calculate the theoretical yield of molten iron in the reaction. (7 marks)

(c) Determine the percentage yield if 5.23 g of molten iron is obtained from the reaction. (2 marks)

----- End of Paper -----

								Gro	Group								
	=											=	2	>	5	II>	0
							1 H hydrogen										heliun He
	6	_					-					11	12	14	16	19	2 20
	Be											в	U	z	0	щ	Ne
lithium	beryllium 4											5 5	carbon 6	nitrogen 7	c	fluorine 9	neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											ΡI		۵.		õ	Ar
1 sodium	magnesium 12											aluminium 13	silicon 14	phosphorus 15	suffur 16	chlorine 17	argon 18
6	40	45	48	51	52	55	56	59	59	64	65	20	73	75	79	80	84
¥		ഗ്ഗ	F	>	ວັ	ЧW		റ്		S	Z		g	As	Se		<u>ک</u>
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	~ ~ /		35 35	krypton 36
\top	88	89	91	93	96	1		103		108	112		119		28	27	131
å R	ഗ്	≻	Zr	qN		Ц	Ru	Rh	ЪЧ	Ag	PO	Ë	Sn	sb	Te	I	Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenu m	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	50 ti	antimony 51	tellurium 52	53 53	xenon 54
	2		2	:		2	:										
ر 133	137 Ra	139	178 Hf	181 Ta	184 W	186 Re	190 0 0	192 Ir	195 T	197 Au	201 Ha	204 1	207 Ph	209 Bi	۱۹	Ρţ	ı ۲
F	barium	Ę.	μË	tantalum 73	c	rhenium 75	osmium 76	iridium 77	platinum 78	plog 79	mercury 80	thallium 81	lead 82	£	ε	astatine 85	radon 86
		,	1														
ŗ	Ra	Ac															
francium 87	radium 88	actinium 89 †												*			
71 La	Inthanoi	*58-71 Lanthanoid series															
103 /	†90-103 Actinoid series	series															
				140	141	144	I (150	152	157	159	1 <u>6</u> 2	165	167	169	173	175
				e.	1	Ð.	۳ 5			5		2	C I		E	TD	hitofium
				cenum 58	59	neodymium 60	60 61 61	samanum 62	europium 63	gadolinium 64	65	dysprosium 66	67	erpium 68		70	71
m	a = re	a = relative atomic mass	ic mass	232	ı		I		I.	1	1	1	1	1	1	۲;	ι.
\times	X = at	X = atomic symbol	0	HT H	Pa		Np	Pu	Am		herkelium M	5	ES einsteinium	fermium fermium	ú m	No	lawrencium
, 	nd = d	b = proton (atomic) number		06		92	93	94	95	G	97	98	99	100		102	103
1	1		-														

Periodic Table